GHRtools
  • Home
  • data4health
    • Overview
  • clim4health
    • Overview
  • GHRexplore
    • Overview
    • Reference
    • Changelog

    • Vignettes
    • Getting started
  • GHRmodel
    • Overview
    • Reference
    • Changelog

    • Vignettes
    • Getting started
    • Covariate structures
    • DLNMs in GHRmodel
  • GHRpredict
    • Overview
  • About GHR

On this page

  • Rank Models by Goodness-of-Fit
    • Description
    • Arguments
    • Returns
    • See Also
    • Examples

Rank Models by Goodness-of-Fit

Description

This function ranks fitted models in a GHRmodels object by a chosen metric (e.g., dic, waic, crps, etc.).

rank_models(models, metric = "dic", n = 10)

Arguments

  • models: A GHRmodels object containing fitted model output.
  • metric: A character string indicating which goodness-of-fit metric to use for ranking. One of: "dic", "waic","lms","mae", "rmse","crps", "rsq","dic_vs_first", "waic_vs_first", "mae_vs_first", "rmse_vs_first", "crps_vs_first", "re_n_var", and "re_n_var_change" (where n is the number of random effect, for ex. re_1_var, re_1_var_change).
  • n: An integer specifying how many top-ranked models to return (default 10).

Returns

A character vector of the top model IDs (in ascending order of the specified metric).

See Also

fit_models for fitting multiple INLA models.

Examples

## Not run:

# Load example GHRmodels object from the package: 
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")
model_list <- readRDS(model_list_file)

# Get a list of the 5 best models by DIC
top_model_dic <- rank_models(
  models = model_list,
  metric = "dic",
  n = 5
)
## End(Not run)

Copyright 2025, GHR