GHRtools
  • Home
  • data4health
    • Overview
  • clim4health
    • Overview
  • GHRexplore
    • Overview
    • Reference
    • Changelog

    • Vignettes
    • Getting started
  • GHRmodel
    • Overview
    • Reference
    • Changelog

    • Vignettes
    • Getting started
    • Covariate structures
    • DLNMs in GHRmodel
  • GHRpredict
    • Overview
  • About GHR

On this page

  • Subset GHRmodels Objects
    • Description
    • Arguments
    • Returns
    • See Also
    • Examples

Subset GHRmodels Objects

Description

This function subsets selected models from a GHRmodels object into a new reduced GHRmodels object.

subset_models(models, mod_id, new_name = NULL)

Arguments

  • models: A GHRmodels object.
  • mod_id: A character vector of model IDs indicating which model(s) to keep. These must match models$mod_gof$model_id.
  • new_name: NULL (default) or a character used to build the new model IDs.

Returns

A new GHRmodels object containing only the specified model(s).

See Also

stack_models for combining GHRmodels objects, fit_models for fitting INLA models.

Examples

## Not run:


# Load example GHRmodels object from the package: 
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")
model_list <- readRDS(model_list_file)

# Extract a vector with the moded IDs of the 2 best fitting models by WAIC
best_waic <- rank_models(
  models = model_list,  # GHRmodels object containing model fit results
  metric = "waic",      # Metric used to rank models (lower WAIC is better)
  n = 2                 # Number of top-ranked models to return
)

# The output is a vector 
best_waic

# Subset those specific models and assign new IDs
model_waic <- subset_models(
  model = model_list,
  mod_id = best_waic,
  new_name = "best_waic"
)

# Check output subset model names
model_waic$mod_gof$model_id  
## End(Not run)

Copyright 2025, GHR